Histological and Chemical Studies of Goat Skin Transformation Processing of Raw Skin into Tanned Leather

Atiqa Rahmawati, Naimah Putri, Ari Wibowo

Abstract


Fresh goat skin and skins tanned with different tanning agents were prepared for histological, chemical, and physical analyses. Fresh skin samples were fixed in 10% formalin solution, processed using the paraffin embedding technique, sectioned, and stained with hematoxylin and eosin to determine the histological structure. Samples of goat tanned skin, treated with various tanning agents (chrome, aldehyde, chamois, and vegetable), underwent chemical analysis using Fourier Transform Infrared Spectroscopy (FTIR) followed by physical analyses, including tensile strength, tear strength, thickness, and shrinkage temperature. The results showed that the histological structure of fresh skin consisted of two layers: the epidermis and dermis, while tanned leather only exhibited the dermis layer. The epidermis was removed during the tanning process. FTIR analysis of chrome-tanned leather showed bands at 1633 cm−1 (amide I), 1554 cm−1 (amide II), and 1240 cm−1 (amide III). Aldehyde-tanned leather showed bands at 1651 cm−1, 1550 cm−1, and 1271 cm−1 (amide I, II, and III), while vegetable-tanned leather displayed bands at 1634 cm−1 (amide I), 1552 cm−1 (amide II), and 1239 cm−1 (amide III). Shifts in peak positions, intensity, and the number of signature peaks were observed across the tanning agents (chrome, aldehyde, oil, and vegetable). The use of different tanning agents—wet blue, wet white, vegetable-tanned, and chamois—resulted in distinct grain-surface structures, significantly influencing the physical characteristics of the leather.


Keywords


epidermis; dermis; FTIR; goat skin; tanned leather

Full Text:

PDF

References


Animal Science Commodity Outlook Book, “Goat and sheep meat”. In Data Center and Agricultural Information System, Secretariat General of the Ministry of Agriculture; Pusat Data dan Sistem Informasi Pertanian, Sekretariat Jenderal—Kementerian Pertanian: Jakarta, Indonesia, 2022. Available online: https://satudata.pertanian.go.id/assets/docs/publikasi/Outlook_DgKambing_2022 .pdf (Accessed on 26 Juni 2024)

Alturkistani, H. A., Tashkandi, F. M., and Mohammedsaleh, Z. M. 2015. Histological Stains: A Literature Review and Case Study. Global Journal of Health Science, 8(3), 72–79. https://doi.org/10.5539/gjhs.v8n3p72

Anggraeny, D. T., Awwaly, K. U. Al, and Manab, A. 2022. Physicochemical Characteristics of Leather Goat Quality from less Tanning Process. Journal of Environmental and Agricultural Studies, 3(3), 39–49. https://doi.org/10.32996/jeas.2022.3.3.5

Awwaly, K. U. A. 2017. Protein Pangan Hasil Ternak dan Aplikasinya (1st ed.). Universitas Brawijaya Press. Malang.

California Division of Occupational Safety and Health (Cal/OSHA). 2019. Permissible exposure limits (PELs), in California code regulations (CCR) Title 8 Section 5155.

Cheloti, M., Wangila, P., Kiprop, A., Onyuka, A., Sasia, A., Mutuku, M., Induli, M., Kundu, B., and Masenge, E. 2023. Evaluation of Mechanical Properties of Goat Leather Tanned using Acacia xanthophloea. Textile & Leather Review, 6, 333–342. https://doi.org/10.31881/TLR.2023.053

Chen, J., Ma, J., Fan, Q., Zhang, W., and Guo, R. 2023. A sustainable chrome-free tanning approach based on Zr-MOFs functionalized with different metals through post-synthetic modification. Chemical Engineering Journal, 474, 145453. https://doi.org/10.1016/j.cej.2023.145453.

Chen, Z., Butke, R., Miller, B., Hitchcock, C.L., Allen, H.C., Povoski, S.P. 2013. Infrared metrics for fixation-free liver tumor detection. J Phys Chem B. 2013;117(41): 12442–50.

China, C. R., Maguta, M. M., Nyandoro, S. S., Hilonga, A., Kanth, S. V., and Njau, K. N. 2020. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review. Chemosphere, 254, 126804. https://doi.org/10.1016/j.chemosphere.2020.126804

Covington, A., and Wise, W. 2020. Tanning Chemistry the Science of Leather (2nd ed.). Royal Society of Chemistry.

Falcão, L., and Araújo, M. E. M. 2014. Application of ATR-FTIR spectroscopy to the analysis of tannins in historic leathers: The case study of the upholstery from the 19th century Portuguese Royal Train. Vibrational Spectroscopy, 74, 98–103. https://doi.org/10.1016/j.vibspec.2014.08.001

Falcão, L., and Araújo, M. E. M. 2018. Vegetable tannins used in the manufacture of historic leathers. Molecules, 23(5). https://doi.org/10.3390/molecules23051081

Fourneau, M., Canon, C., Van Vlaender, D., Collins, M. J., Fiddyment, S., Poumay, Y., and Deparis, O. 2020. Histological study of sheep skin transformation during the recreation of historical parchment manufacture. Heritage Science, 8(1). https://doi.org/10.1186/s40494-020-00421-z

Gun, İ., and Syedim, Z. 2022. The Characteristics of Goat Skin used in The Production of Tulum Cheese and Changes in Ripening Environments. Gıda Journal of Food, 47(5), 729–743. https://doi.org/10.15237/gida.gd22015

Gurina, T. S., and Simms, L. 2024. Histology, Staining.

Hamdi, I., Benaissa, A., Babelhadja, B., Bedda, H., Aboub, S., and Loubakic, R. 2022. Composition and structure of the skin of dromedary (Camelus dromedarius, L. 1758) young adult from two Algerian populations. Journal of Animal Behavior and Biometeorology, 10(2). https://doi.org/10.31893/jabb.22017

Heth, C. L. 2015. The skin they were in: Leather and tanning in antiquity. In ACS Symposium Series (Vol. 1211, pp. 181–196). American Chemical Society. https://doi.org/10.1021/bk-2015-1211.ch006

Jawahar, M., Vani, and Babu, N. K. C. 2016. Leather Species Identification Based on Surface Morphological Characteristics using Image Analysis Technique. Journal of the American Leather Chemists Association, 111, 308–314.

Jusuf, A. A. 2009. Histoteknik Dasar (1st ed.). Universitas Indonesia press.

Kade Malam Gadjimi, A., Mamman, M., Guiguigbaza-Kossigan, C.-D., Kountou Marliya, G., Adamou, A., and Hamani, M. 2022. Comparative zootechnic characteristics of Maradi Red goat and her Black variant in Niger. International Journal of Innovation and Applied Studies, 36(2), 564–576. http://www.ijias.issr-journals.org/

Kalangi, S. J. R. (2013). Histofisiologi Kulit. Jurnal Biomedi, 5(3), 12–20.

Kumar, S., Verma, T., Mukherjee, R., Ariese, F., Somasundaram, K., Umapathy, S., Raman. (2016). Infra-red micro spectroscopy: towards quantitative evaluation for clinical research by ratio metric analysis. Chem Soc Rev. 45(7):1879–90

List, M., Puchinger, H., Gabriel, H., Monkowius, U., & Schwarzinger, C. (2016). N-Methylmelamines: Synthesis, Characterization, and Physical Properties. Journal of Organic Chemistry, 81(10), 4066–4075. https://doi.org/10.1021/acs.joc.6b00355

Lukas, R., Satrio, M., Wibowo, A., Maryati, T., & Yuliatmo, R. (2022). Skin-Preserved Quality In Terms Of Histological Structure During The Covid-19 Pandemic. Journal of Industrial Innovation, 1(1), 66–75.

Maina, P., Ollengo, M. A., and Nthiga, E. W. 2019. Trends in leather processing: A Review. International Journal of Scientific and Research Publications (IJSRP), 9(12), 9626. https://doi.org/10.29322/ijsrp.9.12.2019.p9626

Matos, J. C., Menezes, V. G., Gois, G. C., de Araújo, G. G. L., de Carvalho Barcellos, B. S., Soares, M. G., de Matos, M. H. T., Moraes, E. A., Menezes, D. R., and Queiroz, M. A. Á. 2022. Histological and physical–mechanical characteristics of the skin of Dorper sheep related to residual feed intake and the confinement environment. Tropical Animal Health and Production, 54(5). https://doi.org/10.1007/s11250-022-03320-6

Mehta, M., Naffa, R., Maidment, C., Holmes, G., Waterland, M. 2020. Raman and ATR-FTIR spectroscopy towards classification of wet blue bovine leather using ratio metric and chemometric analysis. Journal of leather science and engineering, 2(3),1-15.

Mohamed, H., Van Klink, E., Mohamed, H. A. A., Van Klink, E. G. M., and Elhassan, S. M. 2016. Damage caused by spoilage bacteria to the structure of cattle hides and sheep skins. International Journal of Animal Health and Livestock Production Research, 2(1), 39–56. https://www.researchgate.net/publication/299850965

Monteiro, A., Costa, J. M., and Lima, M. J. 2018. Goat System Productions: Advantages and Disadvantages to the Animal, Environment and Farmer. In Goat Science. InTech. https://doi.org/10.5772/intechopen.70002

Plestenjak, E., Kraigher, B., Leskovec, S., Mandic Mulec, I., Marković, S., Ščančar, J., and Milačič, R. 2022. Reduction of hexavalent chromium using bacterial isolates and a microbial community enriched from tannery effluent. Scientific Reports, 12(1), 20197. https://doi.org/10.1038/s41598-022-24797-z

Qin, L., Bi, J. R., Li, D. M., Dong, M., Zhao, Z.Y., and Dong, X.P. 2016. Unfolding/ refolding study on collagen from sea cucumber based on 2D fourier transform infrared spectroscopy. Molecules. 21(11):1546.

Razvi, R., Suri, S., Sarma, K., and Sharma, R. 2015. Histomorphological and histochemical studies on the different layers of skin of Bakerwali goat. Journal of Applied Animal Research, 43(2), 208–213. https://doi.org/10.1080/09712119.2014.963089

Shirmohammadli, Y., Efhamisisi, D., and Pizzi, A. 2018. Tannins as a sustainable raw material for green chemistry: A review. Industrial Crops and Products, 126, 316–332. https://doi.org/10.1016/j.indcrop.2018.10.034

Stani, C., Vaccari, L., Mitri, E., Birarda, G. (2020). FTIR investigation of the secondary structure of type I collagen: New insight into the amide III band. Spectrochemical Acta Part A, 229, 1-7. https://doi.org/10.1016/j.saa.2019.118006.

Stefano, M., Corain, L., & Peruffo, A. (2015). Histological analysis of the skin dermal components in bovine hides stored under different conditions. Article in Journal of the American Leather Chemists Association, 110. https://www.researchgate.net/publication/279315225

Suparno, O. 2010. Optimizing of chamois leather tanning using rubber seed oil. JALCA, 105.

Taotao, Q., Xuechuan, W., and Longfang, R. 2009. Recovery of Collagen from Phosphonium tanned leather shavings and application as formaldehyde scavenger. Phosphonium Scavenger JALCA, 104, 316–322.

Tournier, R. 2020. Tanning Chemicals’ Influence in Leather Tensile and Tear Strength Review. Journal of the American Leather Chemists Association, 115(11), 409–412. https://doi.org/10.34314/jalca.v115i11.4185

Vaiopoulou, E., and Gikas, P. 2012. Effects of chromium on activated sludge and on the performance of wastewater treatment plants: A review. Water Research, 46(3), 549–570. https://doi.org/10.1016/j.watres.2011.11.024

Wang, Y. N., and Li, J. 2016. Effect of Sodium Chloride on Structure of Collagen Fiber Network in Pickling and Tanning. In JALCA (Vol. 111). https://www.researchgate.net/publication/303840560

Yousef, H., Alhajj, M., Fakoya, A.O., Sharma, S. Anatomy, Skin (Integument), Epidermis. [Updated 2024 Jun 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470464/

Zhang, Y., Liu, H., Tang, K., Liu, J., and Li, X. 2021. Effect of different ions in assisting protease to open the collagen fiber bundles in leather making. Journal of Cleaner Production, 293. https://doi.org/10.1016/j.jclepro.2021.126017




DOI: https://doi.org/10.17969/agripet.v25i1.43456

Article Metrics

Abstract view : 35 times
PDF - 34 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Agripet

License URL: https://www.jurnal.usk.ac.id/agripet/about/submissions#copyrightNotice


Creative Commons LicenseISSN: 1411-4623E-ISSN: 2460-4534
Copyright© 2000-2025 | ISSN: 1411-4623 | EISSN: 2460-4534 
Jurnal Agripet is licensed under a Creative Commons Attribution 4.0 International License.

 

Published by: 
Department of Animal ScienceFaculty of Agriculture, Universitas Syiah Kuala 
Supported by Animal Scientist's Society of Indonesia (HILPI)
Jl. Tgk. Hasan Krueng Kalee No. 3, Kopelma Darussalam,
Banda Aceh, 23111, Indonesia.
Phone: +62-81383736633
Email: jurnalagripet@usk.ac.id


Online Submissions & Guidelines Editorial Policies | Contact Statistics Indexing | Citations